Application Examples

INTRODUCTION

Optocouplers are used to isolate signals for protection and safety between a safe and a potentially hazardous or electrically noisy environment. The interfacing of the optocoupler between digital or analogue signals needs to be designed correctly for proper protection. The following examples help in this area by using DC- and AC-input phototransistor optocouplers.

OPTOCOUPLERS IN IC LOGIC DESIGN

To interface with TTL logic circuits, Vishay offers a wide range of 4 pin and 6 pin optocoupler series such as the CNY17x, SFH61xA, TCET110x, or K817P family.
a) Supply voltage: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
b) Operation temperature range: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
c) Service life of application: 10 years

Example 1:

Phototransistor wired to an emitter resistor.

For simplicity, a typical CTR value of 100% at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ is selected. Within the temperature range of $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ the CTR undergoes a change between $+12 \%$ and -17%. The -17% reduction is critical to the functioning of the circuit. Assuming a 10-year service life period of the interface circuit, allowance needs to be made for additional CTR reduction of approximately 20% on account of degradation. Making an additional tolerance allowance of approximately - 25% for the CTR will result in a safe minimum value of approximately 50 \%.
CTR $_{\text {min. }}=\mathbf{1 0 0 \%} \mathbf{x} \mathbf{(0 . 8 3)} \mathbf{x (0 . 8 0)} \times \mathbf{(0 . 7 5)}=\mathbf{4 9 . 8} \%$
For a defined low state at the output of the optocoupler the voltage V_{L} at R_{L} must be $\mathrm{V}_{\mathrm{IL}} \leq 0.8 \mathrm{~V}$ and current $I_{I L}\left(l_{\mathrm{L}} \mathrm{max} .=1.6 \mathrm{~mA}\right)$ must be capable of flowing through R_{L} from the TTL input.
Owing to the phototransistor in this case being blocked at the output of the optocoupler and $\mathrm{I}_{\text {CEO }}$ maximum 200 nA (at approximately $60^{\circ} \mathrm{C}$), the $I_{L}-I_{I L}$ setting can proceed practically without any error.

This results in the following maximum value of R_{L} :

$$
\mathrm{R}_{\mathrm{L}}<\frac{\mathrm{V}_{\mathrm{IL}}}{\mathrm{I}_{\mathrm{IL}}}=\frac{0.8 \mathrm{~V}}{1.6 \mathrm{~mA}}=500 \Omega
$$

A voltage V_{L} at R_{L} resistor of $\mathrm{V}_{I H} \geq 2 \mathrm{~V}$ is necessary in order to attain a safe high state at the output. This needs to be generated by the collector current I_{C} of the phototransistor. In the case of the TTL output at the input of the optocoupler, the current should remain $\mathrm{I}_{\mathrm{OL}} \leq 16 \mathrm{~mA}$. The CTR value of 50% results in the maximum output current I_{C} for the optocoupler of 8 mA .
With $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{IH}}$ and I_{IH} for standard TTL being maximum, $40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{C}}$ can be assumed without any essential error. This allows the minimum value to be determined for R_{L} :

$$
R_{L}>\frac{V_{I H}}{I_{L}}=\frac{2 \mathrm{~V}}{8 \mathrm{~mA}}=250 \Omega
$$

If, for example, $R_{L}=390 \Omega$ is selected and 20% safety is computed to the minimum V_{IH} in respect of the high state $\left(\mathrm{V}_{I H}+\mathrm{V}_{\mathrm{IH}} \times 20 \%=2.4 \mathrm{~V}\right)$, this will then permit $\mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{F}}$, and the dropping resistor R_{V} at the input of the optocoupler to be determined,

$$
\begin{aligned}
& I_{C}=I_{L}>\frac{2.4 \mathrm{~V}}{390 \Omega}=6.15 \mathrm{~mA} \\
& ->I_{F}>\frac{6.15 \mathrm{~mA}}{C T R}=12.3 \mathrm{~mA}
\end{aligned}
$$

With $\mathrm{V}_{\mathrm{F}}=1.2 \mathrm{~V}$, (the forward voltage of the IR diode) and $\mathrm{V}_{\mathrm{OL}} \leq 0.4 \mathrm{~V}$ for the TTL output follows:

$$
\mathrm{R}_{\mathrm{V}}>\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{OL}}}{12.3 \mathrm{~mA}}=276 \Omega, \mathrm{R}_{\mathrm{V}}=270 \Omega
$$

The TTL interface with the optocoupler is able to transmit signals having a frequency of $>50 \mathrm{kHz}$ or a transmission rate of $\geq 100 \mathrm{kbit} / \mathrm{s}$.
In the same way, the optocoupler can interface with other logic circuits, such as LSTTL, HCMOS, or HCTMOS components. All that needs to be done is to work the corresponding limit values $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{IL}}$, I_{OL}, etc, into the computation for the relevant family.
If use is made of LSTTL or HCTMOS components this will also bring about an essential reduction in current consumption.

Example 2:
Phototransistor wired to a collector resistor.

15097

The CTR is determined by applying the same calculation - 50 \% - as that given in example 1. In this example, dimensioning of the interface is launched from the high state at the output of the optocoupler.
In the high state a non-operate current of the I_{IH} - of maximum $40 \mu \mathrm{~A}$ - may flow in the TTL input. If R_{L} selection is too high, the entire non-operate current $=I_{\text {CEO }}+I_{I H}$ may produce such a voltage drop through the R_{L} that the critical V_{IH} voltage (minimum $=2 \mathrm{~V}$) is not attained.

$$
\mathrm{R}_{\mathrm{L}}<\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IH}}}{\mathrm{I}_{\mathrm{CEO}}+\mathrm{I}_{\mathrm{IH}}}=\frac{5 \mathrm{~V}-2 \mathrm{~V}}{40.2 \mu \mathrm{~A}}=74.6 \mathrm{k} \Omega
$$

Or if another $+20 \%$ safety is added to the V_{IH} voltage,
$\mathrm{R}_{\mathrm{L}}<\frac{\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IH}} \times 20 / 100\right)}{\mathrm{I}_{\mathrm{CEO}}{ }^{+} \mathrm{I}_{\mathrm{IH}}}=\frac{5 \mathrm{~V}-2.4 \mathrm{~V}}{40.2 \mu \mathrm{~A}}=64.7 \mathrm{k} \Omega$
For calculating the smallest usable R_{L} value, $I_{C_{\max }}=8 \mathrm{~mA}$ is assumed as in example 1 and use is made of the low state of the optocoupler output. In this circuit the current I_{IL} of the TTL input flows through the phototransistor in such a way that the following applies: $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{IL}}$. This results in the following:

$$
\mathrm{R}_{\mathrm{L}}>\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IL}}}{\mathrm{I}_{\mathrm{Cmax}}-\mathrm{I}_{\mathrm{IL}}}=\frac{5 \mathrm{~V}-0.8 \mathrm{~V}}{6.4 \mathrm{~mA}}=656 \Omega
$$

To select the value for R_{L}, the following should be observed. Proceeding from the voltage $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$, the phototransistor is on the limits of saturation.
Owing to the voltage V_{CE} being relatively unstable in this state, V_{CE} should be selected in such a way that the phototransistor is in full saturation.
From the diagram $\mathrm{V}_{\text {CEsat }}$ vs. I_{C} in any given 4 pin or 6 pin phototransistor data sheet, CTR reduced by 50% and for $\mathrm{I}_{\mathrm{C}}<5 \mathrm{~mA}$ follows $\mathrm{V}_{\text {CEsat }}<0.5 \mathrm{~V}$.
$\mathrm{I}_{\text {Cmax. }}$ is now reduced to approximately 4 mA and for the
minimum R_{L} follows,

$$
\mathrm{R}_{\mathrm{L}}>\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CEsat}}}{4 \mathrm{~mA}-1.6 \mathrm{~mA}}=\frac{5 \mathrm{~V}-(0,5) \mathrm{V}}{2.4 \mathrm{~mA}}=1875 \Omega
$$

If a suitable value is selected for the resistor R_{L}, it is possible to determine R_{V} at the input.
Example for $R_{L}=5.1 \mathrm{k} \Omega$ follows:

$$
I_{L}=\frac{V_{C C}-V_{C E s a t}}{R_{L}}=\frac{5.5 \mathrm{~mA} \mathrm{~V}}{5.1 \mathrm{k} \Omega}=1.08 \mathrm{~mA}
$$

$I_{C}=I_{I L}+I_{L}=2.68 \mathrm{~mA}$
and with $\mathrm{CTR}=25 \%, \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{C}} / \mathrm{CTR}=10.72 \mathrm{~mA}$:

$$
\mathrm{R}_{\mathrm{V}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{OL}}}{10.72 \mathrm{~mA}}=317 \Omega, \mathrm{R}_{\mathrm{V}}=330 \Omega
$$

This interface circuit can be used for transmission rates of up to about $28 \mathrm{kbit} / \mathrm{s}$ The fact that considerably lower transmission rates are possible here compared with the circuit given in example 1 is partly due to the saturation state of the phototransistor, and to a large extent, to the higher value required for R_{L}.

Example 3:

Here are other circuit configurations to interface with TTL circuit, specifically the 7400 family.

TTL ACTIVE LEVEL LOW (7400)

Note: Use smaller pull-up resistor 7454 for higher speed

It is more difficult to operate into TTL gates in the active levelhigh configuration. Some possible methods are as follows:

Note: Best method if negative supply is available

Note: Requires 10 mA from transistor and sacrifices

Note: High sensitivity but sacrifices noise margin. Needs extra parts

Note: Extra parts cost but, high sensitivity

Obviously, several optocoupler output transistors can be connected to perform logical functions.

Note: Logical OR connection

17457
Note: Logical AND connection

INPUT DRIVING CIRCUITS

The input side of the optocoupler has an emitter characteristic as shown.

The forward current must be controlled to provide the desired operating condition.
The input can be conveniently driven by integrated circuit logic elements in a number of different ways.

TTL ACTIVE LEVEL HIGH (7400 SERIES)

TTL ACTIVE LEVEL LOW (7400 SERIES)

Not recommended

There are obviously many other ways to drive the device with logic signals, but a majority can be met with the above circuits. All provide 10 mA into the LED, giving 2 mA minimum out of the phototransistor. The 1 V diode knee and its high capacitance (typically 100 pF) provides good noise immunity. The rise time and propagation delay can be reduced by biasing the diode onto perhaps 1 mA forward current, but the noise performance will be increased.

AC INPUT COMPATIBLE OPTOCOUPLER

INTRODUCTION

With the rapid penetration and diversification of electronic systems, demand for optocouplers is strengthening. Most popular are products featuring compact design, low cost, and high added value. To meet the market needs, Vishay is expanding the optocoupler. This application note focuses on optocouplers compatible with AC input, and covers configuration, principles of operation, and application examples.

CONFIGURATION
 (INTERNAL PIN CONNECTION DIAGRAM)

Fig. 1-4 Pin AC-Input Optocoupler

Fig. 2-4 Pin DC-Input Optocoupler

Figure 1 shows the internal pin connection of a 4 pin AC-input SFH620A-x optocoupler TCET1600, K814P series; and figure 2 , of a 4 pin DC-input optocoupler TCET1100, SFH61xA-x, and K817P series. The main difference is that the AC-input optocouplers incorporate an input circuit with two emitters connected in reverse parallel. In the DC-input optocoupler one emitter is connected in the input circuit so that the emitter emits light to provide a signal when a current flows in one direction(1-> 2 in figure 1) (one-direction input type).
However, in the configuration shown in figure 2, when a current flows in direction 1 to 2 , emitter 1 emits light to send a signal, and when it flows from 2 to 1 , emitter 2 emits light to send a signal (bi-directional input type). Namely, even if the voltage level between 1 and 2 varies, and the positive and negative polarities are changed, either of two emitters emits light to send a signal. This means that the one-direction input optocoupler permits DC input only, while the bi-directional input type permits AC input as well. The next section describes the status of output signals when V_{ac} power is directly input to an AC input compatible optocoupler via a current limit resistor.

Fig. 3-AC-Input-Compatible Optocoupler (Bi-Directional Input)

15100
Fig. 4 - Conventional Optocoupler (One-Direction Input) (Full-Wave Rectification by Means of Diode Bridge)

Example 2: detection of a telephone bell signal

Fig. 5 - AC-Input-Compatible Optocoupler (Bi-Directional Input)

Ring Line

Fig. 6 - Conventional Optocoupler (One-Direction Input)
(Rectified by CR Circuit)

Example 3: sequencer circuit input section

Fig. 7 - AC-Input-Compatible Optocoupler (Bi-Directional Input)

Fig. 8 - Conventional Optocoupler (One-Direction Input) (Full-Wave Rectified by Diode Bridge)

PROGRAMMABLE LOGIC CONTROLLER EXAMPLE

PURPOSE: IN-OUT INTERFACE

